ILRS SLR MISSION SUPPORT REQUEST FORM (March 2018) **SECTION I: MISSION INFORMATION:** General Information: Satellite Name: Indian Regional Navigation Satellite System- IRNSS-11 Satellite Host Organization: Indian Space Research Organization (ISRO) Web Address: http://www.isro.gov.in; http://www.istrac.gov.in Contact Information: Primary Technical Contact Information: Name: T Subramanya Ganesh, Deputy General Manager, INOCTF NSA, ISTRAC Address: Plot No: 12 &13, 3rd Main, 2nd Phase, Peenya Industrial Area, Bangalore-560058, Karnataka State, INDIA Phone No.: +91-80-28094216 Fax No.: +91-80-28094203 E-mail Address: ganesht@istrac.org Alternate Technical Contact Information: Name: B N Ramakrishna, Deputy Director, NSA Address: Plot No: 12 &13, 3rd Main, 2nd Phase, Peenya Industrial Area, Bangalore-560058, Karnataka State, INDIA Phone No.: +91-80-28094583 Fax No.: +91-80-28094203 E-mail Address: ramki@istrac.org Primary Science Contact Information: Name: ,B P Dakshayini Address: ISRO Satellite Center, Airport Road, Vimanapura Post, Bangalore-560017, Karnataka State, INDIA Phone No.: +91-80-25084402 Fax No.: +91-80-25084332 E-mail Address: bpdaksha@isac.gov.in Alternate Science Contact Information: Name: R Ramasubramanian, Programme Director, Satellite Navigation Program, Address: ISRO Satellite Center, Airport Road, Vimanapura Post, Bangalore-560017, Karnataka State, INDIA Phone No.: +91-80-25084386 Fax No.: +91-80-25084275 E-mail Address: subra@isac.gov.in ### **Mission Specifics:** Scientific or Engineering Objectives of Mission: ISRO plans to carry out the experiments on satellite based navigation techniques using IRNSS and estimation of IRNSS Satellites orbits and clocks on real time basis. In this experiment ISRO is planned to study the techniques on "Onboard atomic clock performance evaluation", Clock Synchronization technique between satellite and ground station, ranging error estimation techniques and precise orbit determination techniques for Geo-stationary and Geo-synchronous satellite missions. Satellite Laser Ranging (SLR) Role of Mission: To determine the orbits of IRNSS satellites precisely and for evaluation of orbit determination accuracy. SLR measurements will also be used to evaluate time synchronization between ground clock and onboard clocks and to establish the SLR tracking techniques for Geo-stationary and Geo-synchronous satellites. The SLR tracking data will be used to supplement and to calibrate the ISRO CDMA ranging systems. Anticipated Launch Date: April 2018 Expected Mission Duration: 12 Years Orbital Accuracy Required: 5 mm or better ### Anticipated Orbital Parameters: Altitude: 35790 – 36000 Km Geo-synchronous orbit Inclination: 28.5 degrees at 55 East Longitude Eccentricity: 0.0018 Orbital Period: 23 hours 56 minutes Frequency of Orbital Maneuvers: 33 days Mission Timeline: To be decided later. ### SECTION II: TRACKING RESTRICTIONS: Several types of tracking restrictions have been required during some satellite missions. See http://ilrs.gsfc.nasa.gov/satellite_missions/restricted.html for a complete discussion. - 1) Elevation restrictions: Certain satellites have a risk of possible damage when ranged near the zenith. Therefore a mission may want to set an elevation (in degrees) above which a station may not range to the satellite. - 2) Go/No-go restrictions: There are situations when on-board detectors on certain satellites are vulnerable to damaged by intense laser irradiation. These situations could include safe hold position or maneuvers. A small ASCII file is kept on a computer controlled by the satellite's mission which includes various information and the literal "go" or "nogo" to indicate whether it is safe to range to the spacecraft. Stations access this file by ftp every 5-15 minutes (as specified by the mission) and do not range when the flag file is set to "nogo" or when the internet connection prevents reading the file. - 3) Segment restrictions: Certain satellites can allow ranging only during certain parts of the pass as seen from the ground. These missions provide station-dependent files with lists of start and stop times for ranging during each pass. - 4) Power limits: There are certain missions for which the laser transmit power must always be restricted to prevent detector damage. This requires setting laser power and beam divergence at the ranging station before and after each pass. While the above restrictions are controlled by Software, this restriction is often controlled manually. Many ILRS stations support some or all of these tracking restrictions. See xxx for the current list. You may wish to work through the ILRS with the stations to test their compliance with your restrictions or to encourage additional stations that are critical to your mission to implement them. The following information gives the ILRS a better idea of the mission's restrictions. Be aware that once predictions are provided to the stations, there is no guarantee that forgotten restrictions can be immediately enforced. Can detector(s) or other equipment on the spacecraft be damaged or confused by excessive irradiation, particularly in any one of these wavelengths (532nm, 1064nm, 846nm, or 423nm)? Currently there are no such restrictions envisaged. However exact details will be declared two months prior to satellite launch. Are there times when the LRAs will not be accessible from the ground? As IRNSS is a Geo-stationary/Geo-synchronous missions, this may not be applicable. Detailed study will be done. However exact details will be declared two months prior to satellite launch. | NA | | | | |--|-----------|----------------------------|------------| | For what reason(s)? | | | | | Is there a need for a go/no-go tracking restriction? | NA_ | | 3 | | Is there a need for an altitude tracking restriction? | NA | What altitude (degrees)? | NA | | (If so, go/nogo or segmentation files might be used to a | void rang | ing an LRA that is not acc | cessible.) | # **Tracking Requirements:** Tracking Schedule: SLR tracking is required after 40 days from launch or as soon orbital parking slot reached. Support required for 4hours each day for total of 30 day Spatial Coverage: The Asiatic continent and Indian Ocean Area Temporal Coverage: All times **Operations Requirements:** Prediction Center: ISRO Telemetry Tracking and Command Network Prediction Technical Contact Information: T Subramanya Ganesh, Deputy General Manager, INOCTF, N SA, ISTRAC Bangalore Address: Plot No:12 &13, 3rd Main, 2nd Phase, Peenya Industrial Area, Bangalore-560058, Karnataka State, INDIA Phone No.: +91-80-28094216 Fax No.: +91-80-28094203 E-mail Address: ganesht@istrac.org Priority of SLR for POD: Primary Normal Point Time Span (sec): 300 sec Other Sources of POD (GPS, Doppler, etc.): Tracking Network Required (Full/NASA/EUROLAS/WPLTN/Mission Specific): SLR stations over Asian region, European region and African Continents IRNSS navigation message, CDMA based orbit determination #### SECTION III: RETROREFLECTOR ARRAY INFORMATION: A prerequisite for accurate reduction of laser range observations is a complete set of prelaunch parameters that define the characteristics and location of the LRA on the satellite. The set of parameters should include a general description of the array, including references to any ground-tests that may have been carried out, array manufacturer and whether the array type has been used in previous satellite missions. So the following information is requested: 423 Retroreflector Primary Contact Information: Name: V Ramanathan, Project Director, IRNSS Space Segment, Address: ISRO Satellite Center, Airport Road, Vimanapura Post, Bangalore-560017, Karnataka State, INDIA Phone No.: +91-80-25082662 Fax No.: +91-80-25084275 E-mail Address: vram@isac.gov.in Array type (spherical, hexagonal, planar, etc.), to include a diagram or photograph: Hexagon Array Array manufacturer: LEOS, ISRO, Bangalore, INDIA Link (URL or reference) to any ground-tests that were carried out on the array: FFDP(Far field diffraction pattern) measurements carried out. Reference details at present not available, will be provided later, if required. The LRA design and/or type of cubes was previously used on the following missions: Already used in IRNSS-1A, IRNSS-1B, IRNSS-1C IRNSS-1D IRNSS-1E IRNSS-1F IRNSS-1G missions of ISRO For accurate orbital analysis it is essential that full information is available in order that a model of the 3-dimensional position of the satellite center of mass may be referred to the location in space at which the laser range measurements are made. To achieve this, the 3-D location of the LRA phase center must be specified in a satellite fixed reference frame with respect to the satellite's mass center. In practice this means that the following parameters must be available at mm accuracy or better: The 3-D location (possibly time-dependent) of the satellite's mass center relative to a satellite-based origin: | 11 | , | | |----|---|--| | | | | | | | | | | | | | For what reason(s)? | |---| | NA | | Is there a need for a laser power restriction? NA Under what circumstances? | | NA . | | What power level (mW/cm ²)? NA Is manual control of transmit power acceptable? To be decided | | For ILRS stations to range to satellites with restrictions, the mission sponsor must agree to the following statement: "The mission sponsor agrees not to make any claims against the station or station contractors or subcontractors, or their respective employees for any damage arising from these ranging activities, whether such damage is caused by negligence or otherwise, except in the case of willful misconduct." | | Please initial here to express agreement: R Ramasubramanian | | Other comments on tracking restrictions: Will be intimated after reaching final orbit if there are any | | Will be intimated after reaching final orbit, if there are any | | | | | | | 1 12 12 | The 3-D location of the phase center of the LRA relative to a satellite-based origin: | | | |---|--|--| | Nil | | | | | | | | | | | | However, in order to achieve the above if it is not directly specified (the ideal case) by the satellite manufacturer, and as an independent check, the following information must be supplied prior to launch: | | | | The position and orientation of the LRA reference point (LRA mass-center or marker on LRA assembly) relative to a satellite-based origin: | | | | Nil | | | | | | | | The position (XYZ) of either the vertex or the center of the front face of each corner cube within the LRA assembly, with respect to the LRA reference point and including information of amount of recession of front faces of cubes: | | | | Nil | | | | The second of the first | | | | The orientation of each cube within the LRA assembly (three angles for each cube): | | | | Nil The shape and size of each corner cube, especially the height: | | | | 29.70 mm height clear aperture Dia:38mm | | | | The material from which the cubes are manufactured (e.g. quartz): | | | | | | | | Fused Quartz - Suprasil Grade | | | | The \(\text{refractive} \) (micron): index of the cube material, as a function of wavelength | | | | Material Data sheet enclosed | | | | Dihedral angle offset(s) and manufacturing tolerance: 0 deg +/- 0.5 arc secs | | | | Radius of curvature of front surfaces of cubes, if applicable: | | | | Nil (flat surface) | | | | Flatness of cubes' surfaces (as a fraction of wavelength): lamda/10 or better | | | | Whether or not the cubes are coated and with what material: No coating | | | 42.10 | Other Comments: | | | |-----------------|-----|--| | Nil | | | | | . 2 | | | | | | | | | | | | | | | | | | 型湯 An example of the metric information for the array position that should be supplied is given schematically below for the LRA on the GIOVE-A satellite. Given the positions and characteristics of the cubes within the LRA tray, it is possible to compute the location of the array phase center. Then given the **C** and **L** vectors it is straightforward to calculate the vector from the satellite's center of mass (CoM) in a spacecraft-fixed frame to the LRA phase center. Further analysis to derive the array far-field diffraction patterns will be possible using the information given above. A good example of a well-specified LRA is that prepared by GFZ for the CHAMP mission in the paper "The Retro-Reflector for the CHAMP Satellite: Final Design and Realization", which is available on the ILRS Web site at http://ilrs.gsfc.nasa.gov/docs/rra_champ.pdf. The final and possibly most complex piece of information is a description (for an active satellite) of the satellite's attitude regime as a function of time, which must be supplied in some form by the operating agency. This algorithm will relate the spacecraft reference frame to, for example, an inertial frame such as J2000. ### RETROREFLECTOR ARRAY REFERENCES Two reports, both by David Arnold, are of particular interest in the design and analysis of laser retro-reflector arrays. - Method of Calculating Retroreflector-array Transfer Functions, David A. Arnold, Smithsonian Astrophysical Observatory Special Report 382, 1979. - Retroreflector Array Transfer Functions, David A. Arnold, ILRS Signal Processing Working Group, 2002. Paper available at http://ilrs.gsfc.nasa.gov/docs/retro_transfer_functions.pdf. ## SECTION IV: MISSION CONCURRENCE | As an authorized representative of the IRNSS-1I | mission, I hereby | |--|-------------------| | request and authorize the ILRS to track the satellite described in this do | cument. | | Name (print): R Ramasubramanian | Date | | Signature: अर्ग रामसुब्रमणियन / R. RAMASUBRAMANIAN आर रामसुब्रमणियन / R. RAMASUBRAMANIAN कार्यऋम निदेशक, उपग्रह नैसंचालन कार्यऋम कार्यऋम निदेशक, उपग्रह नैसंचालन कार्यऋम | | | आर.रामसुत्रभागवान नेपग्रह नैसंचालन कोवन्नर
कार्यन्नर निदेशक, उपग्रह नैसंचालन कोवन्नर
कार्यन्नर निदेशक, उपग्रह नैसंचालन कोवन्नर
कार्यन्नर निदेशक, उपग्रह नैसंचालन कोवन्नर
कार्यन्नर निदेशक, उपग्रह नैसंचालन कोवन्नर
Programme Director, Satellite Navigation Program, ISRO | . | Send form to: ILRS Central Bureau c/o Carey Noll NASA GSFC Code 690 Greenbelt, MD 20771 USA 301-614-6542 (Voice) 301-614-6015 (Fax) Carey.Noll@nasa.gov